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Abstract—This paper summarizes our approach and exper-
imental evaluation of infrastructure-based Indoor Positioning
System (IPS) designed to be used by First Responders. We
are using 868 MHz single channel, power-efficient radio markers
and RSSI (Receiver Signal Strength Indicator) fingerprinting.
Artificial Neural Network translates vectors of RSSI constructed
using mobile units into position. Special preprocessing needs to
be applied to on-line signal to construct a vector for classification.

I. INTRODUCTION

Positioning system in GPS-denied environments (such as

large buildings, tunnels etc.) can play crucial role in the

Search and Rescue operations. Indoor Positioning Systems

(IPSs) can improve not only safety of First Responders, e.g.

Smoke Divers who have to search the building and safely

withdraw having very limited oxygen supply, but also system

like that could assist in decision making and risk manage-

ment at rescue scene [1] by enhancing situation awareness

of the Incident Commander. Yet, reliable information about

deployment of resources (both humans and equipment) in

the dynamical changing, decision-demanding environment is

very challenging. This paper summarizes our approach for

infrastructure-based indoor localization designed to be a part

of risk management system for Incidents Commanders.

IPS can significantly optimize performance of fire brigade at

incident scene in various aspects. Firstly, communication can

be significantly enhanced as it was discussed in [4]—basing

on interviews with experts and some on-field experiments

the number of voice communication could be significantly

reduced. Secondly, one of the most significant factor that is

known to be source of accident (or near-miss incidents) at a

fire scene is the lack of situational awareness1. Information

about deployment of personnel is a key-factor at incident
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and Development (NCBiR)—Grant No. O ROB/0010/03/001 in the frame of
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for decision support for commanders of the State Fire Service of Poland during
Fire&Rescue operations in the buildings”.

1The National Fire Fighter Near Miss Reporting. Annual Report 2008.

place. At the same time, it should be advised how to present

the information. Amount of information generated at the scene

can easily overwhelm [1] the Incident Commander.

Most reliable IPSs involve usage of infrastructure-based

techniques, in which various transmitters (or beacons) are

deployed in buildings beforehand. That enables us to position

the receiver node carried by the subject. Different techniques

can be used for such setup (see survey [2] for extensive

summary). Following this survey, we have chosen to exploit

radio Received Signal Strength Indicator (RSSI) fingerprinting,

because of two main reasons: (1) relatively cheap and easy

to deploy, and (2) accuracy can be easily tuned by adjusting

number of anchor nodes.

(a) Anchor node (b) Receiver node

Fig. 1: Radio Nodes: anchor nodes are deployed at known locations around
the building while Receiver node is carried by the First Responder.

RSSI fingerprinting is an empirical technique based on

measuring the intensity (strength) of received signal at known

positions. Those measurements form features (fingerprints) of

signal attenuation of different radios influenced mostly by

walls and steel constructions of the building. Positioning can

be seen as a problem of classification of incoming signal in

order to find “best-match” from known database.

In our setup we also have taken into consideration issues

that are specific for search and rescue operation. Firstly,
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the algorithm needs to be fault-tolerant: damage of a single

radio should not increase significantly the positioning error.

Secondly, it is known that fire environment could alter signal

propagation significantly [3].

The contributions of this paper are as follows:

• experimental evaluation of IPS based on RSSI fingerprint-

ing and Artificial Neural Networks,

• discussion on hardware design of radio markers (anchor

nodes).

II. RELATED WORK

Due to the growing demand for indoor positioning systems,

wireless location is an important area of research in recent

years. Many studies have been published concerning different

types of localization techniques.

Both Personal Dead Reckoning (PDR) and Foot-mounted

Pedestrian Navigation System use Inertial Measurement Units

(IMUs) for path estimation. However, since the IMU position

error accumulate during the procedure of walking, a lot of

attention is paid to systems based on a pre-installed infrastruc-

ture. Nowadays, the most frequently used technology is based

on radios, e.g.: pseudo-satellite transmitters, Radio Frequency

Identification (RFID) markers and Ultra-Wideband (UWB)

radars. This has many advantages, radio is not limited by the

line-of-sight condition as radio signals can penetrate walls and

diffract around objects [5].

Several methods have been proposed to estimate the location

using sensor networks. Usually, the approach is based on

reference nodes (beacons, anchor nodes), which positions are

known. The position of the receiver is calculated from the

information it receives from the beacons.

The position can be derived from distance estimates between

the beacons and receiver node. Most radio receivers in a

wireless system have the ability to measure the Radio Signal

Strength Indicator (RSSI). This can be later translated to a

distance by using a path loss model. Generally, the relation

between RSSI and distance is determined by the following

formula

RSSI(d) = P −R− 10α log10 d, (1)

where P is the transmitted power, α is the path loss exponent

which falls linearly and R is a constant that depends on

the conditions of the environment, d is the distance from

transmitting end [6].

Generally, three main methods are used for the problem

of localization: trilateration, multilateration and fingerprinting.

Trilateration and multilateration are based on the propagation

model, conceptually simpler, but difficult to calculate in a com-

plex environment—firstly distance needs to be estimated ac-

curately, which involves usage of more expensive transceivers

(e.g. UWB radio that uses ToF model2) and, secondly, environ-

ment (and its changes over time) modelling can be challenging.

In contrast, fingerprinting is empirical method in which signal

attenuation in the building are measured and, therefore neither

2http://www.decawave.com/

the signal propagation model is not used nor the building plan

does not to be known.

Trilateration technique uses properties of triangles to deter-

mine the location, therefore it usually requires at least three

access points on the surface. While using this technique precise

distance needs to be measured (which usually is not achievable

using RSSI). Precise distance is measured using different

physical techniques: Angle of Arrival (AoA) is a method that

locates the user by measuring the angle of incoming signal,

Time of Arrival (ToA) is a technique based on the Time

of Flight (ToF). While using this method the clocks of all

physical units must be precisely synchronized and clock drift

compensated. All this makes the final system more complex.

Multilateration is a navigation technique based on measure-

ment of the difference between the distances to two or more

stations located at known locations that transmit a signal in

the indicated times [7]. It differs from trilateration in that it

does not use absolute measurement of Time of Flight, but its

differences (TDoA, Time Difference of Arrival). Position is

then estimated by the intersection of hyperboloids which are

places consisting of points having equal TDoAs. In this case,

the problem can be represented as an optimization problem and

solved using, for example, the method of the least squares or

gradient descent method.

Due to the fact that certain signals can be disturbed by

presence of obstacles, some extensions (like, e.g., multiwalls

model) to above-mentioned methods were introduced.

Fingerprinting is another method frequently used in indoor

positioning. In this technique radio signal strength is measured

at different locations beforehand. During the first (training or

off-line) stage signal strength data is collected is the physical

location (usually up to 50 × 50m2) to the training/labelling

database, or to a non-linear mapping. In the second (on-line)

stage of the mobile unit measures RSSI and compares its

value to values held in the database. In result location with

similar matching is returned. The location of the fingerprint

technique requires an adequate number of reference devices

and stable environment before calibration, because the result

is sensitive to environmental changes, such as moving objects

in a building that may have an impact on the properties of the

signal. Fingerprinting can obtain good performance, since the

noise arising from all obstacles is already included in the map.

Therefore, we do not have to add to it any additional model.

The widely used basic matching algorithm used in finger-

printing is the k-Nearest Neighbour (k-NN) [8]. In the on-

line positioning step the k-NN algorithm is searching for k

neighbour closest (in the sense of the Euclidean distance)

between classes of fingerprint database and the real-time

RSSI values to determine the location. The Support Vector

Regression (SVR) [9] as well as, Artificial Neural Network

(ANN) are in widespread use as well [10], [11], [12], [13].

Comparison of different architectures of neural networks can

be found in [12].

Moreover, there are attempts to combine such estimation

with dead-reckoning navigation using foot-strapped inertial

measurement units [14].
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Fig. 2: Simulation of radio sampling vs density of radio displacement. On the
right results for empirical data (for twmin = 300ms and twmax = 1200ms)
is enclosed.

III. HARDWARE SETUP

We use transceivers based on RFM22 Hope Microelectron-

ics co. silicon with 17 cm coper wire antenna (half-wave long).

RFM22 have ability to work in very different modes (mod-

ulation, frequency, transmit power). Additionally, our setup

involves computations of neural network on mobile device

(Odroid-U3), sending it via ZigBee 867 Mbps (2.4 GHz) and

displaying actual positioning using Recon Jet head-mounted

display3.

The relatively low frequency (868 MHz) was chosen be-

cause of the high penetration ability of signal comparing to

power consumption. Also, the noise from different devices

operating in this particular frequency band is expected to

be smaller (comparing to e.g. 2.4 Ghz). It is worth to note

that higher penetration gives us possibility to build sparse

node networks, which drastically lowers the cost of overall

system. Another issue is signal attenuation in smoke and fire

environment which is known issue (see [3]) but there is not

enough comparable results to choose the best operating band

for this purpose.

Two type of radio nodes was constructed: anchor node

(see Fig. 1a) and receiver node (Fig. 1b). Anchors send

periodically small portions of data including identifier and

message number. Receiver Node is gathering those packages

while establishing RSSI and reports it to processing unit.

Configuration of RFM22 was as follows: 868 MHz fre-

quency transmission band, FSK modulation without Manch-

ester encoding (error detection technique—disabled for shorter

time of transmission) and +17 dBm mode (transmit power).

During initial test we confirmed sufficient wall penetration and

expected RSS loss.

Every anchor node operates on exactly the same frequency

and, because of that, two radios which transmit their signal

can drown each other. Two or more radios that are in mutual

coverage area cannot transmit their data in the same time.

Therefore, transmission synchronization needs to be performed

3http://www.reconinstruments.com/products/jet/

to overcome problem of mutual jamming. Nevertheless, direct

clock synchronization is very complicated in Wireless Sensor

Networks (see [15] for overview of the problem), especially

in indoor environment (where GPS-based synchronization is

unavailable).

Straightforward, node-independent mutual jamming preven-

tion technique based on randomized transmission was imple-

mented. Node number i transmits its mark which usually lasts

for about 15 ms, and then radio goes into sleep mode for Ti ms.

Idle time is picked randomly after each transmission from the

interval

twmin < Ti < twmax. (2)

This way, idle time is long enough to allow other radios

to transmit their data and short enough to retransmit packet,

if it was dropped while mobile is not moved far. Due to

the high noise in RSSI estimation it is important to get as

many readings as possible. The data is later preprocessed using

moving window technique (see Section V-A).

Figure 2 shows simulation result for selected values of

twmin and twmax with regard of the number of anchor nodes.

Increased number of anchor nodes obviously lead to increased

sampling rate at Receiver Node. This, however, can be done

only to some extent, after which sampling rate is degrading

(because of the collisions in transmission). Peeks at Fig. 2 in-

dicates more or less “optimal setup”. Having estimated number

of nodes that can jam each other on deployed building interval

of sleeping time should be adjusted using this simulation.

Sampling rate estimated from empirical data (which was

16.3 ± 2.5 rps) in our experiment is higher than expected

(depicted by the box plot on the right-hand side of Fig. 2).

In our experimental deployment (see Fig. 6) distant nodes are

on the edge communication reach and, therefore, they have

limited possibility to drown each other.

IV. SYSTEM DESCRIPTION

Overall system processing schema is illustrated in Fig. 3.

Operation of IPS that is based on fingerprinting is divided

into two phases: off-line and on-line. In the first fingerprints

are collected and learning procedure is performed. In on-line

phase, on the other hand, incoming signal is processed “on-

the-fly” and algorithm outputs position.

Anchor Node

Anchor Node

Mobile Node

1

3

2

4

5

6

Fingerprinting Neural Network training

Classification

Signal preprocessing using
moving window

path-level
postprocessing

Indoor/outdoor
classification

Position

Offline

Online

parameter tunning

indoor

outdoor

Fig. 3: Processing steps of the Localization Algorithm

At step ➀ fingerprints are collected (numbers in circles

refers to Figure 3). Radio signal strength is recorded using
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mobile device at predefined places (with known GPS posi-

tion) and used to construct a feature vector (fingerprint) for

particular point.

In the on-line situation at the beginning (➂) RSSI signal

needs to be preprocessed to create a test vector for ANN. Due

to the fact that RSSI values from different radios did not arrive

at the same time, sliding window technique is exploited—

due to the small sampling rate fast movements of mobile unit

can degrade precision of test vector formulation (windowing

technique introduces lags). Later we remap entries of this

vector to the interval [0, 1] in order to use the neural network

at step ➁.

Node ➃ is used to resolve the method that will be used

for positioning. It turns out that the simple thresholding of

signals is inadequate, because some radios can be transmit

with lower RSSI value outside than inside. However, it is true

that the signal strength with decrease with the distance from

the building. Indoor/outdoor detection is beyond the scope of

this paper.

Classification (mapping RSSI to position) is performed at

step ➄. Just after it simple mapping to GPS coordinates is

performed.

At the end ➅ path needs to be post-processed (expected high

RSSI noise introduces a lot of distortions on path). Kalman

Filter is a good candidate for solving this problem, because of

the motion model that can be expressed by it.

V. NEURAL NETWORK-BASED FINGERPRINTING

This section describes our framework for IPS based on

Artificial Neural Network.

Most commonly used type of Artificial Neural Network

(ANN) consists of several layers: the input layer is connected

to layers of hidden units, which provide information to the

output layer. For learning ANN the most commonly used

method is the backpropagation algorithm. It tries to adjust

weights of each neuron in order to reduce the error between the

desired and calculated output. In this way, the neural network

learns how to map input to output. The aim of the network is

not only to restore the training input data but also to generalize

the data to new situations (by interpolating capabilities). The

number of input nodes and hidden layers depends on the

design issue and depends on the number of base stations

deployed in the environment.

A. Input data preparation and training set construction

The data collection process involves marking of the refer-

ence points on the floor and making measurements for a 30–

60 s. All points laid on the same plane. In this way at every

point we received a number of recordings consisting of RSSI

which comes from different radios. Therefore, we obtained a

RSSI fingerprint log consisted of triplets

(i, ρj,ki , Pj), (3)

where i = 1, . . . , N , denotes radio number, Pj =
(latitude, longitude, elevation) is a position of jth fingerprint

and ρ
j,k
i is a kth RSSI value recorded at point Pj .

Since all radios may not be visible at once (due to interfer-

ence and momentary jamming of radios), in order to obtain

a vector of RSSI signals from all radios (which will be used

as an input to network) we had to aggregate recordings at a

given point. Therefore, as input corresponding to point Pj and

reading k we took set
{

avg
(

{ρj,kl}
Kj/2
l=1

)

| M rand {kl}
Kj/2
l=1

⊂ {1, . . . ,Kj}

}

, (4)

i.e. we averaged random subsamples of recordings (by taking

half of the recordings) for point Pj . In order to get rid of the

noise we do it M times. Therefore, M can be interpreted as

an aggregation (folding) parameter.
Let us define point signals in time t from N radios in jth

point by the following

ρj(t) = [ρj
1
(t), . . . , ρjN (t)]. (5)

Such signals consist of RSSI recordings aggregated and aver-

aged as above.
Due to issues described below, which are related to neural

networks, we need to map GPS coordinates using affine

scaling into interval [0, 1]. Similarly, RSSI values from radio

are converted into [0, 1].

B. Network architecture

Neural Network that we use for IPS is depicted in Fig. 4. It

consists of input layer constructed from RSSI vector for actual

reading, output layer denotes position in three dimensional

space (latitude, longitude and elevation) and the L number

of hidden layers. We have used sigmoid activation function,

therefore units in input and output vectors need to be mapped

by scaling into interval [0, 1].

...

...
...

RSSI1

RSSI2

RSSI3

RSSIN

H1
1

H1
p

HL
1

HL
q

latitude

longitude

elevation

Input
layer

Hidden
layers

Ouput
layer

W 0

WL

Fig. 4: Neural network setup.

The number of hidden layers and number of neurons at

each layer should be tuned accordingly to specific task. Nev-

ertheless, it is important to say that this particular architecture

depends significantly on number of anchor nodes used for IPS

system. It is hard to estimate time complexity of the learning

algorithm. Estimation for the worst case scenario is

MNL

L
∏

i=0

#W i, (6)
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where #W i is the number of weights in layer i and L is

the number of layers in the network. We see that it depends

strictly on the size of the building, since additional reference

nodes need to be added.

Learning takes quite long, depending on the permissible

error. For example, for our problem with permissible error

equal to 0.01 and folding parameter equal to 20 (which means

that the number of samples grows by the factor of 20) it took

between 4 and 10 h on a single core. The number of iterations

was set to 10000. It is important to notice that quality of

network classification depends on the number of iterations and

goal set.

C. On-line signal classification

Due to the possible interference and temporary signal

deficiencies input data in on-line classification need to be

preprocessed first. During the movement the mobile unit can

receive readings from different anchors in different times

(radio reading are sparse and unevenly sampled), therefore

we used sliding window technique to receive feature vector at

given time.

In order to impute missing values of signal strength we can

use local linear approximation as follows

ρ(t+∆t) = ρ(t) + ρ′(t)∆t+ µ

= ρ(t) + βd′(t) log10 d(t) + µ, (7)

where β is some constant and µ denotes higher order terms

with small magnitude. Assuming that locally velocity of the

subject is constant (d′(t) = vloc = const) we use it to smooth

the signal. The result is shown in Fig. 10 and was not so

impressive as supposed. Therefore, we used linear regression.

Given fingerprints as in (3) we want to obtain input signal

for the network as in (5).

Since at given time not all radios may be visible we define

moving window W of length τ for time series s (till time t)

as

Wτ (s)(t) := [s(t− τ), . . . , s(t)] (8)

which will collect the signal strength in a short period.

To this end, we performed moving average on RSSI from

the last two seconds. If there was no radio signal from a given

radio in the given window, then we put 0. In short,

ρ̂(t) :=
[

MAk

(

Wτ (ρ1)(t)
)

, . . . ,MAk

(

Wτ (ρN )(t)
)]

, (9)

where MAk stands for moving average operator of length k.

Signal prepared in this way can be used as an input to the

neural network. For post-processing we used the Kalman filter.

Therefore, path are smoother and better corresponds to reality.

D. Network architecture tuning

We found out that standard heuristics, like taking two hidden

layers with number of neurons in the second layer being

half of that in the first layer (see [16] for more information)

works quite fine. We used very large first layer since we

need embed data in high dimension and obtain overfitting

in order to discriminate it. Next layer is smaller but we get
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R
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S
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local linear fit

Fig. 5: RSSI (anchor number 4) while moving (only showing first 1.5 min
of the recording). Rolling mean (moving average) have very good smoothing
capabilities but it introduces certain lag while local linear regression seems
to work on-line but does not lead to errors cancellation.

better generalization properties and avoid overfitting. Such

architecture can be obtained when analysing in detail Fig. 7.

VI. EXPERIMENTAL SECTION

We conducted experiment using 18 anchor nodes deploying

them on the one floor of approximately 30 × 30m building.

Fig. 6 shows displacement of radios and fingerprints. Note that

the data was collected only in selected rooms and passages.

Additionally, the figure show bicubic interpolation of RSSI

signal strength for 5th radio basing on fingerprint features.

0 500 1000 1500 2000 2500
x[m]

1000

1500

2000

2500

y
[m

]

11

10
13

12

15

14

17

16
19

18

1

3

2

5

4

7

6

9

8

anchor nodes fingerprint points

70

80

90

100

110

120

130

140

150

160

170

180

190

200

R
S
S
I

Fig. 6: Interpolated RSSI map for 5th radio. Blue colour in the right upper
corner means that there were no data.

We performed collection at 119 points gathering 5991

records (samples) overall. Each position was recorder for about

18.1 ± 4.2 seconds which gives us 297.3 ± 90.2 records on

average. Points were not distributed uniformly, but they were

chosen in such a way that there were no large area without

samples. Moreover, significant error was introduced while we

manually collected GPS positions of reference points.

Two experiments were conducted: stationary position es-

timation and movement/path reconstruction. For training the

neural networks we have used folding parameter M = 20.

It may seem rather small, but that enables us to perform

parameter sweeping through different network architectures in

reasonable time (see Fig. 7).
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A. Position in stationary points

In the first experiment we tested position estimated at

stationary points (without movement). Recorded fingerprints

were divided into two separate sets in ratio 70/30. Points was

chosen manually and are depicted in Fig. 6. Test sample was

prepared according to Equation (4).
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Fig. 7: Position estimation error using ANN with #W 1 and #W 2 neurons
on the first and the second layer respectively (lower figure). Upper figure
shows column-wise summed up results for H1 layer.

As it can be seen, our heuristics works quite good. For

example, when there is about 10–14 neurons in the first layer

the average error falls below 0.5 m. Larger networks do not

guarantee an improvement of the results (even though some

of them were significantly better).

B. Paths

Second experiment was focused on path reconstruction. We

asked a subject to perform a walk-through the building with

receiver node. Results are depicted in Fig. 8–10. True path

was marked on figures using video camera recordings.

As it was already written, most of the errors in the motion is

introduced by the low frequency of refreshing rate and, thus,

there is the necessity to use of sliding windows.

0 5 10 15 20 25
x[m]

10

15

20

25

y
[m

]

raw path smoothed path true path

Fig. 8: Path for network with [18, 13, 21, 3] perceptrons in layers. Moving
average size of k = 5 s.

The differences on the path are more apparent, where

overfitting dominates interpolation ability of the network. For

example, the path in the corridor, surrounded by a small

amount of training points, is better suited than in other places.
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Fig. 9: Path for network with [3, 40, 26, 3] perceptrons in layers. Moving
average size of k = 5 s.
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Fig. 10: RSSI smoothing comparison.

In smaller networks we can see that path is being pulled off

(Fig. 9).

Another issue is the necessity of usage of sliding window

technique—it introduces a certain lag into the feature vector

construction. Simply speaking, different RSSIs are recorded

at different places therefore we do not know signal strength

precisely in time. The problem is illustrated on both previous

mentioned figures at the path in lower-right room.

Our initial idea was to use forecasting on RSSI signal that

can minimize lagging issues with standard rolling window

techniques. Ability of forecast the signal strength lies on the

assumption that RSSI is dependent on motion (acceleration

and decelerations are not random), see Equation (7). Therefore,

we tested the idea using local linear regression instead of

rolling mean. Results are depicted in Fig. 10 and show clearly

that this simple forecasting is not working due to the large

impact of noise to path estimation. Nevertheless, the idea of

compensating the signal sampling with motion prediction is

worth pursuing in the future works.

C. Discussion

Fingerprint coverage does not have to be dense (neural

networks have very good interpolation capabilities), but we

noticed a problem with the estimation of places “on edges,”
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where the paths are pulled towards more places with more

dense fingerprint coverage. Some special case should be

applied in order to overcome that.

It is worth noting that more anchor nodes not necessarily

means better performance—sparse node deployment allow

higher signal sampling rate and, therefore, allow better es-

timation of high-velocity motions. Observe, however, that we

cannot assume that radios have different sampling, because we

do not know whether the situation when radio sees only few

neighbours will change in the future. During fire some wall

may broke down and opens new way for the signal.

We also noticed a negative correlation between the velocity

of movement of the subject and location accuracy. This is

obviously due to the fact that we get only a few samples of

RSSIs for a given position. In result the path can oscillate

around the correct location.

Moreover, it can be observed that iron oxygen cylinder

carried by the firefighters can distort the signal very badly.

For example, there were situations where orientation (rotation

along the axis) lead to tremendous improvement of the posi-

tion.
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